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Measurement of the dispersion and absorption of ultrasound is an important way of study- 
ing relaxation processes in molecular gases. With the development of laser and plasma tech- 
niques, interest in vibrationally excited molecular gases has increased significantly in 
recent years. For a high degree of vibrational excitation the theory of Landau and Teller 
[i], which describes the relaxation of harmonic oscillators, becomes inapplicable. This is 
because of the significant effect of the anharmonicity of the molecular vibrations on vibra- 
tional-translational (V-T) and vibrational-vibrational (V-V) processes of energy exchange. 
The theoretical study of the dispersion and absorption of ultrasound in a vibrational!y ex- 
cited gas carried out in [2-4] on the basis of the theory [i] did not take into account the 
anharmonicity of the molecular vibrations and therefore it cannot be applicable under strongly 
nonequilibrium conditions. The purpose of the present paper is to describe sound propaga- 
tion in a system of excited anharmonic molecules. 

i. Gasdynamical Description. We consider a plane sound wave propagating in an inviscid 
vibrationally excited gas of diatomic molecules at rest. Let the nonequilibrium state of the 
system be maintained by an external source q, which pumps energy into the vibrational de- 
gree of freedom of the molecules. Since we are considering a significantly nonequilibrium 
situation, the system is inhomogeneous in principle. However if the wavelength % is much 
smaller than the characteristic linear dimension L of the inhomogeneities: 

~<<L~ (i.i) 

one can assume that the sound propagates on a homogeneous stationary background. 

The system of gasdynamical equations describing the evolution of the density n, velocity 
u, and temperature T of an inviscid gas has the form 

d7 + n ( V u ) = 0 '  --St = - - ~  p, c T + ~ - + 8  = n (pu)+q.  ( 1 , 2 )  

He re  p = nT i s  t h e  g a s  p r e s s u r e ;  m i s  t h e  mass  o f  t h e  componen t  p a r t i c l e s ;  c i s  t h e  h e a t  
c a p a c i t y  a t  c o n s t a n t  vo lume  a s s o c i a t e d  w i t h  t h e  t r a n s l a t i o n a l  and  r o t a t i o n a l  d e g r e e s  o f  f r e e -  
dom; e i s  t h e  v i b r a t i o n a l  e n e r g y  p e r  m o l e c u l e ;  d/dt = O/Otbc(uv) .  

The s y s t e m  ( 1 . 2 )  mus t  be s u p p l e m e n t e d  by an e q u a t i o n  f o r  t h e  t i m e  d e r i v a t i v e  o f  t h e  
q u a n t i t y  ~: 

de/dt = - - S  q- q ( 1 . 3 )  

(S i s  t h e  r a t e  o f  r e l a x a t i o n  o f  v i b r a t i o n a l  e n e r g y ) .  I n  g e n e r a l  S d e p e n d s  on t h e  s t a t e  o f  
t h e  g a s  and on t h e  s t r e n g t h  o f  t h e  s o u r c e .  W i t h  no l o s s  i n  g e n e r a l i t y ,  we w r i t e  S i n  t h e  
fo rm 

S = (g- eeq)/% (1.4) 

where eeq is the equilibrium value of e corresponding to the gas temperature T and ~ = %(n, 
T, q) is an effective vibrational relaxation time. 

All variables describing the sound wave are written in the form 

a = a0 + a '  exp ( - - ~ t  + ikx). ( 1 . 5 )  

Here  w i s  t h e  a n g u l a r  f r e q u e n c y ;  k i s  t h e  wave number  (k = k 0 - i 6 ) ;  a 0 i s  a c o n s t a n t  c o r r e -  
s p o n d i n g  t o  t h e  g a s  u n p e r t u r b e d  by  t h e  sound  wave ( a ' < < a 0 ) .  L i n e a r i z i n g  ( 1 . 2 )  and  ( 1 . 3 )  i n  
the small perturbations (1.5), we obtain the dispersion relation for the propagation of 
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acoustic oscillations in a nonequilibrium system, assuming the condition (i.i): 

'~0 

where u T = (T0/m) l/= is the isothermal speed of sound; c v = ae/~T is the equilibrium heat 
capacity of the vibrational degrees of freedom of the molecules; ~ and ~ are given by 

(~1 ~o or as T oTqq ': ~1= %aT + T  o ~  c v + q o ~  

.o( "ooq oq(i+%o  ) 
t %0. +ToO  

.+ �9 

(1.6) 

(1 .7 )  

In the special case of propagation of ultrasound in a gas in equilibrium (q = 0, ~ = 0, 
= 0), (1.6) reduces to the classical equation of relaxation theory [5]. When the deviation 

from equilibrium is weak we have 8~/~q = 0 and for the additional conditions ~q/~T = 0, ~q/ 
~n = 0 assumed in [4], (1.6) reduces to the result obtained in [4]. In order to describe 
sound propagation in a system of excited anharmonic oscillators, it is necessary to deter- 
mine �9 in (1.6), which can only be done by considering the fundamental processes of vibra- 
tional kinetics occurring in the system. 

2. Kinetic Model. As follows from (1.4), T is defined by the relation 

= (~ -- eeq)/S. (2 .1 )  

For a system of anharmonic oscillators, S is found from the following system of kinetic 
equations for the vibrational energy (E v) distribution function fv of the molecules 

OlvlOt = --Hv+ t + H~ + i~. (2 .2 )  

Here ~v is the flux of population density of the excited molecules in the space of the vibra- 
tional quantum number v; i v is the excitation frequency of the v-th vibrational level by 
the external source. Explicit expressions for Ev can be found in [6, 7]. For anharmonic 
oscillations E v is usually written in the form E v = v[E l - AE(v - i)] (AE is the energy due 
to anharmonicity). There is a simple relation between the parameters q and iv: q =~Evi~. 

Multiplying (2.2) by E v and summing over all v, we have 

O~/Ot = - -  E I @ ( v * * )  + AEF (v**) + q, ~ = ~ E ~ .  (2 .3 )  

Comparing (1 .3 )  and ( 2 . 3 ) ,  we f i n d  

S = E , O ( v * * )  - -  aEF(v**). (2 .4)  

Here t he  quantum number v** cor responds  t o  the  boundary of t h e  nonequ i l i b r i um reg ion  of the  
distribution fv; ~(v) and r(v) are the flux of quanta and flux of quantum "defect" in the 
space of the quantum number v. These functions are given by 

o(v)=vn - no,, (2.5) 
~t= I ~v~2 

In  view of  t he  i n e q u a l i t y  AE/E 1 ~ l ,  we w i l l  n e g l e c t  terms p r o p o r t i o n a l  to  ~E in o rder  to  
s i m p l i f y  t h e  e x p r e s s i o n s .  

Hence S depends on ~v near  t h e  boundary of  t h e  nonequ i l i b r i um reg ion  v**. The a n a l y s i s  
of [6] for ~v for the case of a steady-state excitation can be used to find the position of 
this point. According to [6], the space of the quantum number v can be broken up into three 
characteristic regions: i) 0 < v < v* where the dominant contribution to ~(v) (or Hv ) is 
"nonresonant" V-V exchange between the lower and upper vibrational levels; 2) v ~ < v < v **, 
where the contribution of "resonant" V-V exchange of upper levels becomes significant; 3) 
v > v ** where V-T exchange processes make the dominant contribution in ~(v). Therefore the 
vibrational quantum number v *e is determined from the condition that at v = v** the flux of 
quanta ~(v) transferred upward in v in "resonant" V-V exchange processes is equal to the 
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total rate of loss of quanta due to V-T relaxation processes. Following [6], we have 

- '  (2~co6V_TP-<~), ( 2 . 6 )  v** = 6V_T In 

where c 0 = (q/vE1) I/2 is a parameter characterizing the distribution fv on the "plateau": 

Iv = co/vt V* < v <  V**; (2.7) 

v = 4AEQ~ is the effective frequency of V-V exchange; Pi,0 and Q~:~ are the fre- 
quencies of V-T and u exchange between the ground and first excited levels; 6V- T, 6V-V 
are parameters dependent on temperature and the type of the molecules participating in the 
exchange processes. The number v* is close to the Treanor number v T = EIT/(25ET v) + i/2, 
which determines the minimum of the Treanor distribution 

/7 = / o  exp { - -  v [El~To - -  AE(u - - I ) /T]}  ( 2 . 8 )  

in the region 0 < v < v~ [8] [T v is the vibrational temperature and is related to c o by the 
equation c o = (v* + l)f$*]. The distribution in region 3) is close to the Boltzmann distri- 

bution fv ~ exp (-Ev/T). 

Obviously the relaxation process can be thought of as V-V-exchange-induced "diffusion" 
of vibrational excitations from region !), where the molecules are excited, to the boundary 
of region 2), at which there is rapid de-activation due to V-T exchange. Since the popula- 
tion density of the lower vibrational levels v < v* is comparatively large, a quasistationary 
distribution is established quite rapidly in region i). But in region 2), where the popula- 
tion density of vibrational levels is not large, "diffusion" of excitations is slow and a 
quasiresonant distribution cannot be established when the external conditions change suffi- 
ciently rapidly, i.e., region 2) ultimately determines the total vibrational energy relaxa- 
tion rate. We will assume that the characteristic time to establish a quasistationary dis- 
tribution in region i) is much shorter than the period of the sound wave. The restrictions 
on the frequency of the sound imposed by this condition are considered below. We use the 
diffusion approximation in describing the propagation of excitations into region 2. With 
this approximation we can transform from the discrete form (2.5) to differential analogs of 
the expressions for H v and ~v [6]: 

= - )' e ( 2 . 9 )  

In the derivation of (2.9) we have assumed that the function fv is smooth [this is known to 
be satisfied on the "plateau" (2.7)] and that thermal excitation of vibrations can be ne- 
glected (which will be correct when the gas temperature is low enough). From (2.2) and (2.9) 
we obtain an equation describing the evolution of the number density of vibrational quanta 
~v = fv v on the "plateau": 

a~F,,/Ot = ~vO~F~/av 2. ( 2. I 0 ) 

We consider the boundary conditions to (2.10). For a strongly nonequilibrium distribution 
the flux H v is considered to be the flux of molecules due to resonant V-V exchange by quanta. 
Therefore, by definition of the number v**, the flux Hv at the point v** must vanish with the 
vanishing of vibrational quanta in V-T exchange processes: 

- -  " v d ~ / d v  I~=~,, = 0. ( 2. i 1 ) 

This is the first boundary condition to (2.10). We note that with the help of (2.9) and 
(2.11), Eq. (2.4) for S reduces to the form 

S = ExV~**. (2.12) 

The second boundary  c o n d i t i o n  i s  found by w r i t i n g  ( 2 . 3 )  in  t he  form 

Oe/Ot OellOt + Oe~lOt = = _ Elv~** + q 

[el and s2= S Wvdv are the energies stored in regions I) and 2)]. Using (2.10) in trans- 

forming the derivative 3e2/3t we obtain after integration ~(v*) =:--(i/E,)(q- 08x/Ot). Then, 
using the assumption that the distribution in region I) is quasistationary, we finally obtain 

-- v [V-~v -- ~F~ ,=,,. = ~ .  (2 .13)  

For stationary conditions we obtain from (2.1) and (2.12), neglecting eeq ~ e 
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% = [e~IE~ + ~ ~** - -  v*)l /v~,  

where e z = Ez[exp (E 7T~) -- I] -z for moderate excitation (see, e.g., [9]), and e~<<Ezco(v** -- v*) 
for strong excitation asconsideredhere. In a gas perturbed by sound waves the time Y is a 
function of the frequency of the acoustic perturbation [see (2.10)]. 

3. Sound Propagation in a Gas of Excited Anharmonic Molecules. We linearize (2.10) 
through (2.13), assuming that the perturbation of the number density of vibrational quanta 
~v' = f~v varies periodically according to (1.5), like the other gasdynamical parameters n' , 
T', p', and so on. Then (2.10), with the boundary conditions (2.11) and (2.13), can be writ- 
ten in the form 

dv 2~,oC o u 
d%l Co ,Vt ~ * *  

- -o .  v ~ -- Tv v=% 

(3.1) 

For simplicity we assume that the acoustic oscillations affect the perturbing source only 
weakly: q' = 0. Then we do not have to specify the method of maintaining the nonequilibrium 
state in the system. We note only that when the vibrations are excited by electron colli- 
sions in a gas discharge the quantity 0q/0~(~ {n, T, q}) is given in [i0], while for excita- 
tion of a system of anharmonic molecules by laser radiation it is given in [ii]. 

In (3.1) the boundary conditions are imposed at the points v~ and v~* characterizing 
the unperturbed distribution function fv" In the linear theory this assumption is valid 
since the inclusion of the variation of the numbers v* and v** leads to terms of higher order 
than the first in the above equations. 

The general solution of (3.1) can be expressed in terms of Bessel functions of the first 

Jm(xv) and second Nm(x v) kinds: 

~ = v' ]/"ffcoZ (x~)/2%~ 
2 ( 3 . 2 )  

where x v = (ioTv)I/~; x v = 2v/vet o is the effective time of propagation of the perturbation along 
the v axis [7]; the asterisks above Jm and N m imply that these functions are evaluated at the 
points v~ and v~*. The fact that (3.2) is complex indicates a phase shift of the parameters 
T' and n' with respect to ~ [5]. 

With the help of (2.12) and (3.2) we can easily find S' (the perturbation of the relax- 

ation rate S): S' = q0 +-~o~'v~.. From the definition of the vibrational relaxation time 

(2.1), knowing S' and using (1.3), we obtain 

z' = [(I -- io~o)/io]S'/So. (3.3) 

Using (3.2) and (3.3), we can find expressions for the derivatives ~/3n and 3~/3T, which 
determine, through (1.7), the dispersion and absorption of ultrasound: 

O..~x 1 --~m~ o 1 Oln~ 
a[ = 7  ( l + Z ( x ~ )  [ aln~' [ e { n , r } .  (3 .4 )  

S u b s t i t u t i n g  (3 .4 )  i n t o  ( 1 . 5 ) ,  we have the  d i s p e r s i o n  r e l a t i o n  

t q0 a l n v  
+ + z o r ( 3 . 5 )  

J t qo ( O l n v  Olnv~ 
c + I +T~ ~ ( i  + z (%)) ka ln r - -  a lnn/  

The domain of a p p l i c a b i l i t y  of  (3 .5 )  i s  bounded from the  low-f requency  d i r e c t i o n  by the  
a p p l i c a b i l i t y  of  t h e  p lane-wave approximat ion  ( 1 . 1 ) ,  and from the  h i g h - f r e q u e n c y  d i r e c t i o n  
by the assumption that the Treanor distribution function varies in a quasistationary way. 
Estimating [9] the time t I to establish the Treanor distribution as t~ = el/q0, the latter 
condition can be written in the form mt I ~ i. For the problem considered here, this condi- 
tion is satisfied more exactly the larger the supply of quanta on the "plateau": c0(v** - v*) 
~/E~. 
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In view of the complicated nature of the complex expression Z(x v) an analysis of (3.5) is 
possible only in the limiting cases of low (~T~ << I) and high ((0T v >> I) frequencies. We note 
that T v is a function of the parameter c o (or q0). The quantity Tv varies within very wide 
limits as a function of c o . For strong vibrational nonequilibrium c o typically lies between 
10 -3 and 10 -2 , and ~v lies between 10-7 and 10 -3 sec. Hence the frequency region c~Tv << I 
will correspond to long-wavelength perturbations for which the condition (i.I) may not be 
applicable. Therefore the low-frequency limit of (3.5) is of interest only from the point 
of view of studying the asymptotic behavior of the dispersion characteristics. 

Using the well-known expansions of the Bessel functions for small values of the argu- 
ment, we obtain 

~alnv 
k2u~ c 

�9 qa lnr  (3.6) 

where  ~q = To/qo  and h e n c e  we u s u a l l y  hav e  ~v/~q > 1. The r e c i p r o c a l  o f  t h e  r i g h t - h a n d  s i d e  
of (3.6) can be considered as an effective adiaSatic index 7*. Using the dependence vCO ~ 
nT -I/2 given in [12] for the frequency of V-V exchange between CO molecules in a CO-He 
mixture, we find that 7* > 7 = (c + l)/c. This means that the phase velocity uph = ~/k 0 
of low-frequency sound exceeds the isoentropic speed of sound Uph > u s = (TT0/m)I/2 and there 
is no absorption in this case (Imk = 0). For comparison we note that the propagation veloc- 
ity of low-frequency perturbations in a gas relaxing according to the Landau and Teller 
theory is smaller than u s [2-4]. This feature (uph > u s ) of the propagation velocity of 
long-wavelength perturbations must be considered a general property of a strongly excited 
system of anharmonic molecules. Such a system has a negative vibrational heat capacity (with 
increasing temperature the rate of V-T processes grows more rapidly (~exp (-~T-I/3))than 
the rate of V-V processes (~Tn), and this leads to a decrease in the population density of 
the upper energy levels]. 

Analysis of the high-frequency (m~v >> i) limit of (3.5) shows, as expected, that the 
vibrational degrees of freedom do not participate in the periodic change of state of the 
gas. They are "frozen out" and do not affect the adiabatic relation between the change of 
pressure and change of density. Hence Uph = u s and there is no absorption (or amplification) 
of sound. 

In the intermediate frequency region there is a gradual variation of the speed of sound 
from the value (7*T0/m)Z/z to Us, as is shown in Fig. 1 (curve i) and amplification of sound 
is possible in this region (curve 2). The dispersion Uph/U s and amplification 6/k 0 parame- 
eters are shown as functions of mT v for a CO -He mixture with nco= 1016 cm -3, nHe = i0 Is 
cm -3, T = 175 K, and q = 0.75 W.cm -s. 

Returning to the solution (3.2) of (3.1), we note that the perturbation of the distribu- 
! 

tion function f$ = v -l Re~v is a function of the frequency ~ and the quantum number v and 
varies nonmonotonically for times after a half-period of the sound wave (Fig. 2, ~t = 0 to 
4, ~T v = 10). The formation of such structures on the distribution fv would be of interest 
in the study of emission and absorption spectra of anharmonic dipole molecules under non- 
equilibrium conditions. It is also of importance in the physics of intense CO lasers, where 
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the effects of generation are due to the existence of a "plateau" in the distribution func- 
tion. Because of the build-up of acoustic vibrations there should be lines corresponding to 
the Q and R branches in the spectra of such lasers, whereas generation occurs only in the 
P branch when the system is unperturbed by sound [13]. 

Finally we note that these effects can already be tested experimentally with the help 
of the methods of ultrasonic acoustics [14] or the techniques of measuring the coefficient 
of amplification of weak signals with the help of an IR-laser [15]. 
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